(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
double(s(x)) →+ s(s(double(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0'
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0', 0') → true
eq(0', s(y)) → false
eq(s(x), 0') → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0'
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
double,
del,
eq,
doublelistThey will be analysed ascendingly in the following order:
double < doublelist
eq < del
del < doublelist
(8) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
del(
x,
nil) →
nildel(
x,
cons(
y,
xs)) →
if(
eq(
x,
y),
x,
y,
xs)
if(
true,
x,
y,
xs) →
xsif(
false,
x,
y,
xs) →
cons(
y,
del(
x,
xs))
eq(
0',
0') →
trueeq(
0',
s(
y)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
first(
nil) →
0'first(
cons(
x,
xs)) →
xdoublelist(
nil) →
nildoublelist(
cons(
x,
xs)) →
cons(
double(
x),
doublelist(
del(
first(
cons(
x,
xs)),
cons(
x,
xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))
The following defined symbols remain to be analysed:
double, del, eq, doublelist
They will be analysed ascendingly in the following order:
double < doublelist
eq < del
del < doublelist
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
double(
gen_0':s4_0(
n7_0)) →
gen_0':s4_0(
*(
2,
n7_0)), rt ∈ Ω(1 + n7
0)
Induction Base:
double(gen_0':s4_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_0':s4_0(+(n7_0, 1))) →RΩ(1)
s(s(double(gen_0':s4_0(n7_0)))) →IH
s(s(gen_0':s4_0(*(2, c8_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
del(
x,
nil) →
nildel(
x,
cons(
y,
xs)) →
if(
eq(
x,
y),
x,
y,
xs)
if(
true,
x,
y,
xs) →
xsif(
false,
x,
y,
xs) →
cons(
y,
del(
x,
xs))
eq(
0',
0') →
trueeq(
0',
s(
y)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
first(
nil) →
0'first(
cons(
x,
xs)) →
xdoublelist(
nil) →
nildoublelist(
cons(
x,
xs)) →
cons(
double(
x),
doublelist(
del(
first(
cons(
x,
xs)),
cons(
x,
xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
Lemmas:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))
The following defined symbols remain to be analysed:
eq, del, doublelist
They will be analysed ascendingly in the following order:
eq < del
del < doublelist
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq(
gen_0':s4_0(
n275_0),
gen_0':s4_0(
n275_0)) →
true, rt ∈ Ω(1 + n275
0)
Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true
Induction Step:
eq(gen_0':s4_0(+(n275_0, 1)), gen_0':s4_0(+(n275_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
del(
x,
nil) →
nildel(
x,
cons(
y,
xs)) →
if(
eq(
x,
y),
x,
y,
xs)
if(
true,
x,
y,
xs) →
xsif(
false,
x,
y,
xs) →
cons(
y,
del(
x,
xs))
eq(
0',
0') →
trueeq(
0',
s(
y)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
first(
nil) →
0'first(
cons(
x,
xs)) →
xdoublelist(
nil) →
nildoublelist(
cons(
x,
xs)) →
cons(
double(
x),
doublelist(
del(
first(
cons(
x,
xs)),
cons(
x,
xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
Lemmas:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) → true, rt ∈ Ω(1 + n2750)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))
The following defined symbols remain to be analysed:
del, doublelist
They will be analysed ascendingly in the following order:
del < doublelist
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol del.
(16) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
del(
x,
nil) →
nildel(
x,
cons(
y,
xs)) →
if(
eq(
x,
y),
x,
y,
xs)
if(
true,
x,
y,
xs) →
xsif(
false,
x,
y,
xs) →
cons(
y,
del(
x,
xs))
eq(
0',
0') →
trueeq(
0',
s(
y)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
first(
nil) →
0'first(
cons(
x,
xs)) →
xdoublelist(
nil) →
nildoublelist(
cons(
x,
xs)) →
cons(
double(
x),
doublelist(
del(
first(
cons(
x,
xs)),
cons(
x,
xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
Lemmas:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) → true, rt ∈ Ω(1 + n2750)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))
The following defined symbols remain to be analysed:
doublelist
(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
doublelist(
gen_nil:cons5_0(
n860_0)) →
gen_nil:cons5_0(
n860_0), rt ∈ Ω(1 + n860
0)
Induction Base:
doublelist(gen_nil:cons5_0(0)) →RΩ(1)
nil
Induction Step:
doublelist(gen_nil:cons5_0(+(n860_0, 1))) →RΩ(1)
cons(double(0'), doublelist(del(first(cons(0', gen_nil:cons5_0(n860_0))), cons(0', gen_nil:cons5_0(n860_0))))) →LΩ(1)
cons(gen_0':s4_0(*(2, 0)), doublelist(del(first(cons(0', gen_nil:cons5_0(n860_0))), cons(0', gen_nil:cons5_0(n860_0))))) →RΩ(1)
cons(gen_0':s4_0(0), doublelist(del(0', cons(0', gen_nil:cons5_0(n860_0))))) →RΩ(1)
cons(gen_0':s4_0(0), doublelist(if(eq(0', 0'), 0', 0', gen_nil:cons5_0(n860_0)))) →LΩ(1)
cons(gen_0':s4_0(0), doublelist(if(true, 0', 0', gen_nil:cons5_0(n860_0)))) →RΩ(1)
cons(gen_0':s4_0(0), doublelist(gen_nil:cons5_0(n860_0))) →IH
cons(gen_0':s4_0(0), gen_nil:cons5_0(c861_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(18) Complex Obligation (BEST)
(19) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
del(
x,
nil) →
nildel(
x,
cons(
y,
xs)) →
if(
eq(
x,
y),
x,
y,
xs)
if(
true,
x,
y,
xs) →
xsif(
false,
x,
y,
xs) →
cons(
y,
del(
x,
xs))
eq(
0',
0') →
trueeq(
0',
s(
y)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
first(
nil) →
0'first(
cons(
x,
xs)) →
xdoublelist(
nil) →
nildoublelist(
cons(
x,
xs)) →
cons(
double(
x),
doublelist(
del(
first(
cons(
x,
xs)),
cons(
x,
xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
Lemmas:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) → true, rt ∈ Ω(1 + n2750)
doublelist(gen_nil:cons5_0(n860_0)) → gen_nil:cons5_0(n860_0), rt ∈ Ω(1 + n8600)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
del(
x,
nil) →
nildel(
x,
cons(
y,
xs)) →
if(
eq(
x,
y),
x,
y,
xs)
if(
true,
x,
y,
xs) →
xsif(
false,
x,
y,
xs) →
cons(
y,
del(
x,
xs))
eq(
0',
0') →
trueeq(
0',
s(
y)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
first(
nil) →
0'first(
cons(
x,
xs)) →
xdoublelist(
nil) →
nildoublelist(
cons(
x,
xs)) →
cons(
double(
x),
doublelist(
del(
first(
cons(
x,
xs)),
cons(
x,
xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
Lemmas:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) → true, rt ∈ Ω(1 + n2750)
doublelist(gen_nil:cons5_0(n860_0)) → gen_nil:cons5_0(n860_0), rt ∈ Ω(1 + n8600)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
(24) BOUNDS(n^1, INF)
(25) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
del(
x,
nil) →
nildel(
x,
cons(
y,
xs)) →
if(
eq(
x,
y),
x,
y,
xs)
if(
true,
x,
y,
xs) →
xsif(
false,
x,
y,
xs) →
cons(
y,
del(
x,
xs))
eq(
0',
0') →
trueeq(
0',
s(
y)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
first(
nil) →
0'first(
cons(
x,
xs)) →
xdoublelist(
nil) →
nildoublelist(
cons(
x,
xs)) →
cons(
double(
x),
doublelist(
del(
first(
cons(
x,
xs)),
cons(
x,
xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
Lemmas:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
eq(gen_0':s4_0(n275_0), gen_0':s4_0(n275_0)) → true, rt ∈ Ω(1 + n2750)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
del(
x,
nil) →
nildel(
x,
cons(
y,
xs)) →
if(
eq(
x,
y),
x,
y,
xs)
if(
true,
x,
y,
xs) →
xsif(
false,
x,
y,
xs) →
cons(
y,
del(
x,
xs))
eq(
0',
0') →
trueeq(
0',
s(
y)) →
falseeq(
s(
x),
0') →
falseeq(
s(
x),
s(
y)) →
eq(
x,
y)
first(
nil) →
0'first(
cons(
x,
xs)) →
xdoublelist(
nil) →
nildoublelist(
cons(
x,
xs)) →
cons(
double(
x),
doublelist(
del(
first(
cons(
x,
xs)),
cons(
x,
xs))))
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
del :: 0':s → nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
if :: true:false → 0':s → 0':s → nil:cons → nil:cons
eq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
first :: nil:cons → 0':s
doublelist :: nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
hole_true:false3_0 :: true:false
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons
Lemmas:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
double(gen_0':s4_0(n7_0)) → gen_0':s4_0(*(2, n7_0)), rt ∈ Ω(1 + n70)
(30) BOUNDS(n^1, INF)